3.827 \(\int \frac{x^6}{\sqrt{a+b x^4}} \, dx\)

Optimal. Leaf size=237 \[ -\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{10 b^{7/4} \sqrt{a+b x^4}}+\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 b^{7/4} \sqrt{a+b x^4}}-\frac{3 a x \sqrt{a+b x^4}}{5 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{x^3 \sqrt{a+b x^4}}{5 b} \]

[Out]

(x^3*Sqrt[a + b*x^4])/(5*b) - (3*a*x*Sqrt[a + b*x^4])/(5*b^(3/2)*(Sqrt[a] + Sqrt[b]*x^2)) + (3*a^(5/4)*(Sqrt[a
] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5
*b^(7/4)*Sqrt[a + b*x^4]) - (3*a^(5/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*Ell
ipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(10*b^(7/4)*Sqrt[a + b*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0666207, antiderivative size = 237, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {321, 305, 220, 1196} \[ -\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{10 b^{7/4} \sqrt{a+b x^4}}+\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 b^{7/4} \sqrt{a+b x^4}}-\frac{3 a x \sqrt{a+b x^4}}{5 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{x^3 \sqrt{a+b x^4}}{5 b} \]

Antiderivative was successfully verified.

[In]

Int[x^6/Sqrt[a + b*x^4],x]

[Out]

(x^3*Sqrt[a + b*x^4])/(5*b) - (3*a*x*Sqrt[a + b*x^4])/(5*b^(3/2)*(Sqrt[a] + Sqrt[b]*x^2)) + (3*a^(5/4)*(Sqrt[a
] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5
*b^(7/4)*Sqrt[a + b*x^4]) - (3*a^(5/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*Ell
ipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(10*b^(7/4)*Sqrt[a + b*x^4])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{x^6}{\sqrt{a+b x^4}} \, dx &=\frac{x^3 \sqrt{a+b x^4}}{5 b}-\frac{(3 a) \int \frac{x^2}{\sqrt{a+b x^4}} \, dx}{5 b}\\ &=\frac{x^3 \sqrt{a+b x^4}}{5 b}-\frac{\left (3 a^{3/2}\right ) \int \frac{1}{\sqrt{a+b x^4}} \, dx}{5 b^{3/2}}+\frac{\left (3 a^{3/2}\right ) \int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx}{5 b^{3/2}}\\ &=\frac{x^3 \sqrt{a+b x^4}}{5 b}-\frac{3 a x \sqrt{a+b x^4}}{5 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}+\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{5 b^{7/4} \sqrt{a+b x^4}}-\frac{3 a^{5/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{10 b^{7/4} \sqrt{a+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0172449, size = 64, normalized size = 0.27 \[ \frac{x^3 \left (-a \sqrt{\frac{b x^4}{a}+1} \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-\frac{b x^4}{a}\right )+a+b x^4\right )}{5 b \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^6/Sqrt[a + b*x^4],x]

[Out]

(x^3*(a + b*x^4 - a*Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((b*x^4)/a)]))/(5*b*Sqrt[a + b*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.008, size = 115, normalized size = 0.5 \begin{align*}{\frac{{x}^{3}}{5\,b}\sqrt{b{x}^{4}+a}}-{{\frac{3\,i}{5}}{a}^{{\frac{3}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(b*x^4+a)^(1/2),x)

[Out]

1/5*x^3*(b*x^4+a)^(1/2)/b-3/5*I/b^(3/2)*a^(3/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I
/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b
^(1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{6}}{\sqrt{b x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^6/sqrt(b*x^4 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{6}}{\sqrt{b x^{4} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(x^6/sqrt(b*x^4 + a), x)

________________________________________________________________________________________

Sympy [C]  time = 1.08754, size = 37, normalized size = 0.16 \begin{align*} \frac{x^{7} \Gamma \left (\frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{7}{4} \\ \frac{11}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{11}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(b*x**4+a)**(1/2),x)

[Out]

x**7*gamma(7/4)*hyper((1/2, 7/4), (11/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(11/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{6}}{\sqrt{b x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(x^6/sqrt(b*x^4 + a), x)